
N
et

w
o

rk

Network Transport
Socket Programming

IASP 505

Network

Dr. John Yoon
C

College
YBERSECURITY

Mercy

Reference

 Learn the structure or the format of network
packets

• Visit: www.networksorcery.com for IP

 Coding for unpacking the packets according to
the packet format

• Refer to:
https://docs.python.org/3.6/library/struct.html#

Inter-Layer Relationships

Packing for packets

 Each layer uses the layer below

• The lower layer adds headers to the data from the
upper layer

• The data from the upper layer can also be a header
on data from the layer above …

Unpacking for packets

 Backward3

PROTOCOL DATA

DATAHDR

IP Characteristics

 Datagram-based

• Connectionless

 Unreliable

• Best efforts delivery

• No delivery guarantees

 Logical (32-bit) addresses

• Unrelated to physical addressing

• Leading bits determine network membership

UDP Characteristics

 Also datagram-based

• Connectionless, unreliable, can broadcast

 Applications usually message-based

• No transport-layer retries

• Applications handle (or ignore) errors

 Processes identified by port number

 Services live at specific ports

• Usually below 1024, requiring privilege

TCP Characteristics

 Connection-oriented

• Two endpoints of a virtual circuit

 Reliable

• Application needs no error checking

 Stream-based

• No predefined blocksize

 Processes identified by port numbers

 Services live at specific ports

Sockets

 Various sockets… Any similarity?

 Endpoint of a connection
• Identified by IP address and Port number

 Primitive to implement high-level networking
interfaces
• e.g., Remote procedure call (RPC)

Socket: Conceptual View

socket()

9

What is a socket?

 An interface between application and network
• The application creates a socket

• The socket type dictates the style of
communication
o reliable vs. best effort

o connection-oriented vs. connectionless

 Once configured the application can
• pass data to the socket for network transmission

• receive data from the socket (transmitted through
the network by some other host)

10

Two essential types of sockets

 SOCK_STREAM

• a.k.a. TCP

• reliable delivery

• in-order guaranteed

• connection-oriented

• bidirectional

 SOCK_DGRAM

• a.k.a. UDP

• unreliable delivery

• no order guarantees

• no notion of “connection” – app
indicates dest. for each packet

• can send or receive

App

socket
3 2 1

Dest.
App

socket
3 2 1

D1

D3

D2

Q: why have type SOCK_DGRAM?

11

A Socket-eye view of the Internet

 Each host machine has an IP address

 When a packet arrives at a host

cysecure.org

mercy.edu

www.cnn.com

Ports

Port 0

Port 1

Port 65535

 Each host has
65,536 ports

 Some ports are
reserved for
specific apps
• 20,21: FTP

• 23: Telnet

• 80: HTTP

• 443: HTTPS

• see RFC 1700
o about 2000 ports

are reserved

A socket provides an interface
to send data to/from the
network through a port

13

Addresses, Ports and Sockets

 Like apartments and mailboxes
• You are the application

• Your apartment building address is the address

• Your mailbox is the port

• The post-office is the network

• The socket is the key that gives you access to the right mailbox (one
difference: assume outgoing mail is placed by you in your mailbox)

 Q: How do you choose which port a socket
connects to?

14

The bind function

 associates and (can exclusively) reserves a
port for use by the socket

 int status = bind(sockid, &addrport, size);
• status: error status, = -1 if bind failed

• sockid: integer, socket descriptor

• addrport: struct sockaddr, the (IP) address and port of the machine
(address usually set to INADDR_ANY – chooses a local address)

• size: the size (in bytes) of the addrport structure

 bind can be skipped for both types of sockets.
When and why?

15

Skipping the bind

 SOCK_DGRAM:

• if only sending, no need to bind. The OS finds a
port each time the socket sends a pkt

• if receiving, need to bind

 SOCK_STREAM:

• destination determined during conn. setup

• don’t need to know port sending from (during
connection setup, receiving end is informed of
port)

16

Connection Setup (SOCK_STREAM)

 Recall: no connection setup for
SOCK_DGRAM

 A connection occurs between two kinds of
participants
• passive: waits for an active participant to request connection

• active: initiates connection request to passive side

 Once connection is established, passive and
active participants are “similar”
• both can send & receive data

• either can terminate the connection

Connectionless Services

socket()

bind()

recvfrom()

sendto()

[blocked]

SERVER

socket()

bind()

recvfrom()

[blocked]

sendto()

CLIENT

Simple Connectionless Server

Note that the bind() argument is a two-element tuple of
address and port number

import random

from socket import *

def main():

s = socket(AF_INET, SOCK_DGRAM)

s.bind(('', 54321)) # port number

while 1:

rand = random.randint(0,10)

message, address = s.recvfrom(1024)

print('Server recieved ', message)

message = message.upper()

if rand >= 4:

s.sendto(message, address)

main()

Simple Connectionless Client

import time

from socket import *

for ping in range(10):

c = socket(AF_INET, SOCK_DGRAM)

c.settimeout(1)

message = b"hello, mercy"

address = ('localhost', 54321) # port number

start = time.time()

c.sendto(message, address)

try:

data, server = c.recvfrom(1024)

end = time.time()

elapsed = end - start

print("%s of %d took %d" %(data, ping, elapsed))

except timeout:

print ("Request timed out")

Connection-Oriented Services

socket()

bind()

listen()

accept()

read()

write()

[blocked]

socket()

connect()

write()

read()

[blocked]

[blocked]

Server Client

When interaction is over, server

loops to accept a new connection

Simple Connection Server

Note that the bind() argument is a two-element tuple of
address and port number

from socket import *

def main():

s=socket(AF_INET, SOCK_STREAM)

s.bind((' ',10530))

s.listen(1)

conn, (rmip, rmpt) = s.accept()

while 1:

print ("connected by ", str(rmip)+": " + str(rmpt))

data = conn.recv(1024)

#print ("What was delivered: ", data.decode())

#if not data:

#break

conn.close()

main()

Simple Connection Client

from socket import *

def main():

s = socket(AF_INET, SOCK_STREAM)

s.connect(('localhost',10530))

sendme = "Give me the data"

s.send(sendme.encode())

main()

