Network Transport
Socket Programming

%ercy College ASP 30
YBERSECURITY Network

Dr. John Yoon

Reference

= | earn the structure or the format of network

packets
* Visit: www.networksorcery.com for IP

® Coding for unpacking the packets according to
the packet format

* Refer to:
https://docs.python.org/3.6/library/struct.html#

Inter-Layer Relationships

Packing for packets

" Each layer uses the layer below

* The lower layer adds headers to the data from the
upper layer

* The data from the upper layer can also be a header
on data from the layer above ...

Unpacking for packets
= Backward3™ """ T T T TiT T T T T T - -

HDR DATA

|IP Characteristics

= Datagram-based

e Connectionless

" Unreliable
* Best efforts delivery
* No delivery guarantees

" Logical (32-bit) addresses
* Unrelated to physical addressing
* Leading bits determine network membership

UDP Characteristics

= Also datagram-based @

* Connectionless, unreliable, can broadcast ~

= Applications usually message-based
* No transport-layer retries
* Applications handle (or ignore) errors

" Processes identified by port number

= Services live at specific ports
* Usually below 1024, requiring privilege

TCP Characteristics

Connection-oriented

* Two endpoints of a virtual circuit

Reliable
* Application needs no error checking

Stream-based
* No predefined blocksize

Processes identified by port numbers
Services live at specific ports

&

= Various sockets... Any similarity?

" Endpoint of a connection
* |dentified by IP address and Port number

= Primitive to implement high-level networking
interfaces

* e.g., Remote procedure call (RPC)

Socket: Conceptual View

socket()
bind() A
USER dto()
APPL. o \ recvirom() User Space
s < b
Descriptor L/ b : ‘(

SOCKET |

LAYER ibuffere \buffere socket
. |data ye dala ye paramelers |
fo be / to be 5 i
sent read Operating
Systems

TRANSPORT Numbe Y
LAYER

What is a socket?

" An interface between application and network
* The application creates a socket

* The socket type dictates the style of
communication

oreliable vs. best effort
o connhection-oriented vs. connectionless

" Once configured the application can
* pass data to the socket for network transmission

* receive data from the socket (transmitted through
the network by some other host)

Two essential types of sockets

= SOCK_STREAM = SOCK DGRAM
* a.k.a. TCP . a.k;. UDP
* reliable delivery * unreliable delivery
* in-order guaranteed * no order guarantees
® connection-oriented * no notion of “connection” — app
* bidirectional indicates dest. for each packet

* can send or receive

3 2

VISOCkZT

A Socket-eye view of the Internet

= Fach host machine has an IP address
= When a packet arrives at a host

= Each host has
65,536 ports

= Some ports are
reserved for

specific apps

20,21: FTP
23: Telnet
80: HTTP
443: HTTPS

see RFC 1700

o about 2000 ports
are reserved

Port O

Port 1

Port 65535

A socket provides an interface
data to/from the
network through a port

to send

Addresses, Ports and Sockets

" |Like apartments and mailboxes

* You are the application

* Your apartment building address is the address
* Your mailbox is the port

* The post-office is the network

* The socket is the key that gives you access to the right mailbox (one
difference: assume outgoing mail is placed by you in your mailbox)

= Q: How do you choose which port a socket
connects to?

The bind function

" associates and (can exclusively) reserves a
port for use by the socket

» int status = bind(sockid, &addrport, size);
* status: error status, = -1 if bind failed
* sockid: integer, socket descriptor

e addrport: struct sockaddr, the (IP) address and port of the machine
(address usually set to INADDR _ANY — chooses a local address)

e size:the size (in bytes) of the addrport structure

= bind can be skipped for both types of sockets.
When and why?

Skipping the bind

» SOCK DGRAM:

* if only sending, no need to bind. The OS finds a
port each time the socket sends a pkt

* if receiving, need to bind

« SOCK_STREAM:

* destination determined during conn. setup

* don’t need to know port sending from (during
connection setup, receiving end is informed of
port)

Connection Setup (SOCK_STREAM)

= Recall: no connection setup for

SOCK DGRAM

= A connection occurs between two kinds of
participants

* passive: waits for an active participant to request connection

* active: initiates connection request to passive side

" Once connection is established, passive and
active participants are “similar”

* both can send & receive data
* either can terminate the connection

Connectionless Services

| recvirom()| sendto() |]
[blocked] | recvirom()|
| sentjto() | [blocked]
| |

SERVER CLIENT

Simple Connectionless Server

Note that the bind() argument is a two-element tuple of
address and port number

Simple Connectionless Client

Connection-Oriented Servic_

Server Client

socket
connect

accept :
v :
[blocked] :
Qrsssssannnnnns -
pisie
v I
[blocked]
When interaction is over, server
loops to accept a new connection

Simple Connection Server

Note that the bind() argument is a two-element tuple of
address and port number

Simple Connection Client

