
Types in Python

 Python is not a typed language

• No type of variables declared

• No fixed memory size is allocated for a variable
declared

 What does it mean to you to program?

Motivation

 Consider a program that can compute the
average of exams for each student. There are 100
students.

 How do you do it?
• Create a variable name1 for the first student, name2

for the second student, etc
• Create a variable mid1 for the name1’s exam, mid2 for

the name2’s, etc.
• Do this for final exam, and also the average for each

student for 100 times, …
• So many variables ;(;(;(

 Any other way to make it efficiently?
• Think…

Data Types

 Observe the example very carefully
• What can be in which data type

 Points of Consideration
• How to define

• How to access (use)

List

py R Java C
0 1 2 3

[“python”, “R”, “Java”, “C”]

Tuple

John 1 cyber IoT
0 1 2 3

(“John”, 1, “cyber”, “IoT”)

Dictionary

{ “Lang” : “Python”,
“Major”: “Cyber”,
“Job”: “Cybersecurity Engr”,
“Research”: “IoT”}

PythonLang

CyberMajor

Cy EngJob

IoTRes

Examples of Data Types

 However, basic DT’s are available:

• List [‘a’, 1, 3, ’mercy’]

• Tuple (‘John’, ‘faculty’, 555)

• Dictionary {“USA”: “Washington DC”, “Canada”:
“Ottawa”, “Korea”: “Seoul”, “UK”: “London”}

 How are they different?

• Not just symbols, [], (), { }, but compare those
data elements in it.

 In what case, which DT needs to be applied?

Understanding Data Types

In what case, which DT needs to be applied?

 Camera lenses: Canon lens, Nikon lens, Olympus
lens, Sony lens, can be represented in
____________ data type.

 Camera lenses have features: shutter speed, ISO
sensor, aperture, focus. These features can be
represented in ___________ data type.

 There are 5 photos, p1, p2, p3, p4 and p5 which
are taken by Canon lens, Nikon lens, Nikon lens,
Sony lens, Sony lens, respectively. The data type
_____ is appropriate to represent these photos.

Data Types

The data types, list, tuple or dictionary, are the
structure of data collections.

 List: contains values of the same type

 Tuple: contains values that can constitute an
object

 Dictionary: contains key and value pairs

List

In [83]: lst = ['a', 1, 33, 'Mercy']

In [84]: lst[0]

Out[84]: 'a'

In [85]: lst[0:2]

Out[85]: ['a', 1]

In [86]: lst[-1]

Out[86]: 'Mercy'

In [87]: lst[-1:-2]

Out[87]: []

In [88]: lst[-2:-1]

Out[88]: [33]

 Try and feel the structure of lists

The range of list by a colon “:” notation.
a :b means from the inclusive index a to
the exclusive index b.

The index “-1” means the last element.

Why?
Why not?

In the previous slide

 Some returns as an element; some others in
list.

List
 Create a list of data as many as you can

 Try the following:
• lst[2]

• lst[3]

• lst[3][1]

• lst[2][1]

 Are all above legal?

 Then do this
• lst.append(‘College’)

• lst.append([33,1,33])

• lst.extend([33,1,33])

 Are the following legal?
• lst[3,1]

• lst[3][1]

• lst[4][1]

• lst[:4][1]

Difference?

List

More Methods

 Lookup the API
• len(lst)

• max(lst)

• lst.append(‘College’)

• lst.extend([33,1,33])

• lst.count(33)

• del lst[2]

• lst.remove(33)

 More

• insert()

• reverse()

• sort()

• pop()

Quiz on List

 Given any two arbitrary lists, lst1 and lst2

• Try

• lst1+lst2

• lst1.extend(lst2)

 What is difference?

Tuple

 Try and feel

In [91]: tup = ('John', 'faculty', 555)

In [92]: tup[0]

Out[92]: 'John'

In [93]: tup[:1]

Out[93]: ('John')

In [94]: tup[0:2]

Out[94]: ('John', 'faculty')

In [103]: tup[1][3]

Out[103]: 'u'

Access by indexing
Return in tuple

In the previous slide

 Some returns as an element; some others in tuple.

 What is the return?

What about in a list?

Tuple

 Elements in a tuple are accessed in the same
notation of lists.
• To create, use ()

• To access, use [] notation to indicate with indexes

 Very similar to list
• Only two methods

o count()

o index()

 Methods
• cmp(tup,tu2)

• len(tup)

• list(tup)

• max(tup)

• Tup1 + (1,2)

Dictionary
 Try and feel

In [109]: dct = {"USA":"DC",

"Canada":"Ottawa", "S.Korea":"Seoul",

"UK":"London"}

In [110]: dct["USA"]

Out[110]: 'DC'

In [111]: len(dct)

Out[111]: 4

In [112]: dct.get("USA")

Out[112]: 'DC'

In [114]: dct.items()

Out[114]: dict_items([('S.Korea', 'Seoul'),

('USA', 'DC'), ('Canada', 'Ottawa'), ('UK',

'London')])

In [115]: dct.keys()

Out[115]: dict_keys(['S.Korea', 'USA',

'Canada', 'UK'])

The same
returns

Dictionary

 Look up the API

 Methods
• .get()

• .items()

• .keys()

• .values()

 Access
• .items()[index]

o Error?

• list(.items())

Dictionary
 Methods

• To add
o dct.update({"Japan":"Tokyo"})

o dct.update({"U.Korea":["Seoul","Pyungyang"]})

o dct.update({"USA":1})

• To remove
o dct.pop(“U.Korea”)

 Example
• Let IEEE802std = {802.3: "Ethernet",
802.11: "Wireless LAN", 802.15: "Wireless

PAN", "802.15.1": "Bluetooth",

"802.15.4": "Low-Rate Wireless PAN"}

• How to get the value of 802.11
o Can we express it using indexes only?

– Hint: Use list() of dictionary items

HW4

 Consider
• IEEE802std = {802.3: "Ethernet", 802.11:

"Wireless LAN", 802.15: "Wireless PAN",

"802.15.1": "Bluetooth", "802.15.4": "Low-Rate

Wireless PAN"}

 Q1: What is returned when “IEEE802std” is issued?

• Explain the returned value.

 Q2: How about from “IEEE802std.items()”? What
about “IEEE802std.iteritems()”?

• Hint: One of them is obsolete!

 Q3: Write a statement to list the items of IEEE802std.

• Hint: use a built-in function

HW4 - continued

 Q4: Consider 802.11 and “802.15*”, one in number
another in string. Find out why should it be?

 Q5: Is it possible to redefine the structure that 802.15
consists of 802.15.1 which is Bluetooth, 802.15.4
which is low-rate wireless pan? If so, how?
• Hint: nested dictionary

 Q6: It is possible to define a list of dictionaries and a
dictionary of lists.

• Show your extended examples of each, a list of dictionaries
and a dictionary of lists.

• Extend the domain of network protocols. Hint:
https://www.webopedia.com/quick_ref/OSI_Layers.asp

https://www.webopedia.com/quick_ref/OSI_Layers.asp

Sample

 Read the above by pairing “{“ with “}” for dictionary, “[“ with “]” for lists.
• For example,

• {“Name” : [{“first_name” : “John”, “last_name” : “Yoon”}, {“first_name” : “Chris”,
“last_name” : “Park”}], “Building”: “Maher Hall”}

• Observe the above example for name/value pair-wise structure.

 Note that those pairs are nested as above

{ "Protocols": [{"Layer_1": { "title" : "Physical layer”,
"Protocols" : ["Ethernet", "FDDI", "ATM"],
"Technology": ["electrical impulse", "light", "radio signal"]},

"Layer_2": # do more work… ,
…
"Layer_7": …
}

]
}

