
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Chapter 3 & 4:

Processes & Threads

3.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Processes

 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably

 Process – a program in execution; process execution must
progress in sequential fashion

 Multiple parts

 The program code, also called text section

 Current activity including program counter, processor

registers

 Stack containing temporary data

 Function parameters, return addresses, local variables

 Data section containing global variables

 Heap containing memory dynamically allocated during run time

3.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Process Concept (Cont.)

 Program is passive entity stored on disk (executable file),

process is active

 Program becomes process when executable file loaded into

memory

 Execution of program started via GUI mouse clicks, command

line entry of its name, etc

 One program can be several processes

 Consider multiple users executing the same program

3.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Process in Memory

3.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Process State

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

3.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Diagram of Process State

3.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

CPU Switch From Process to Process

3.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Multi-Threads

 So far, process has a single thread of execution

 Consider having multiple program counters per process

 Multiple locations can execute at once

 Multiple threads of control -> threads

 Must then have storage for thread details, multiple program

counters in PCB

 See next chapter

3.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Threads

 Most modern applications are multithreaded

 Threads run within application

 Multiple tasks with the application can be implemented by

separate threads

 Update display

 Fetch data

 Spell checking

 Answer a network request

 Process creation is heavy-weight while thread creation is

light-weight

 Can simplify code, increase efficiency

 Kernels are generally multithreaded

3.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Multithreaded Server Architecture

3.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Benefits

 Responsiveness – may allow continued execution if part of

process is blocked, especially important for user interfaces

 Resource Sharing – threads share resources of process, easier

than shared memory or message passing

 Economy – cheaper than process creation, thread switching

lower overhead than context switching

 Scalability – process can take advantage of multiprocessor

architectures

3.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Multicore Programming

 Multicore or multiprocessor systems putting pressure on

programmers, challenges include:

 Dividing activities

 Balance

 Data splitting

 Data dependency

 Testing and debugging

 Parallelism implies a system can perform more than one task

simultaneously

 Concurrency supports more than one task making progress

 Single processor / core, scheduler providing concurrency

3.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Multicore Programming (Cont.)

 Types of parallelism

 Data parallelism – distributes subsets of the same data

across multiple cores, same operation on each

 Task parallelism – distributing threads across cores, each

thread performing unique operation

 As # of threads grows, so does architectural support for threading

 CPUs have cores as well as hardware threads

 Consider Oracle SPARC T4 with 8 cores, and 8 hardware

threads per core

3.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Concurrency vs. Parallelism

 Concurrent execution on single-core system:

 Parallelism on a multi-core system:

3.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Single and Multithreaded Processes

3.16 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Exercise

Import the module

from multiprocessing import Process, Lock

def f(l,i):

 l.acquire()

 try:

 print("hello Mercy, acquired by ", i)

 finally:

 l.release()

 print("relased is ", i)

if __name__ == "__main__":

 lock = Lock()

 for num in range(10):

 print ("Number generated ", num)

 Process(target=f, args=(lock,num)).start()

