
Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Chapter 3 & 4:

Processes & Threads

3.2 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Processes

 An operating system executes a variety of programs:

 Batch system – jobs

 Time-shared systems – user programs or tasks

 Textbook uses the terms job and process almost interchangeably

 Process – a program in execution; process execution must
progress in sequential fashion

 Multiple parts

 The program code, also called text section

 Current activity including program counter, processor

registers

 Stack containing temporary data

 Function parameters, return addresses, local variables

 Data section containing global variables

 Heap containing memory dynamically allocated during run time

3.3 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Process Concept (Cont.)

 Program is passive entity stored on disk (executable file),

process is active

 Program becomes process when executable file loaded into

memory

 Execution of program started via GUI mouse clicks, command

line entry of its name, etc

 One program can be several processes

 Consider multiple users executing the same program

3.4 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Process in Memory

3.5 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Process State

 As a process executes, it changes state

 new: The process is being created

 running: Instructions are being executed

 waiting: The process is waiting for some event to occur

 ready: The process is waiting to be assigned to a processor

 terminated: The process has finished execution

3.6 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Diagram of Process State

3.7 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

CPU Switch From Process to Process

3.8 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Multi-Threads

 So far, process has a single thread of execution

 Consider having multiple program counters per process

 Multiple locations can execute at once

 Multiple threads of control -> threads

 Must then have storage for thread details, multiple program

counters in PCB

 See next chapter

3.9 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Threads

 Most modern applications are multithreaded

 Threads run within application

 Multiple tasks with the application can be implemented by

separate threads

 Update display

 Fetch data

 Spell checking

 Answer a network request

 Process creation is heavy-weight while thread creation is

light-weight

 Can simplify code, increase efficiency

 Kernels are generally multithreaded

3.10 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Multithreaded Server Architecture

3.11 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Benefits

 Responsiveness – may allow continued execution if part of

process is blocked, especially important for user interfaces

 Resource Sharing – threads share resources of process, easier

than shared memory or message passing

 Economy – cheaper than process creation, thread switching

lower overhead than context switching

 Scalability – process can take advantage of multiprocessor

architectures

3.12 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Multicore Programming

 Multicore or multiprocessor systems putting pressure on

programmers, challenges include:

 Dividing activities

 Balance

 Data splitting

 Data dependency

 Testing and debugging

 Parallelism implies a system can perform more than one task

simultaneously

 Concurrency supports more than one task making progress

 Single processor / core, scheduler providing concurrency

3.13 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Multicore Programming (Cont.)

 Types of parallelism

 Data parallelism – distributes subsets of the same data

across multiple cores, same operation on each

 Task parallelism – distributing threads across cores, each

thread performing unique operation

 As # of threads grows, so does architectural support for threading

 CPUs have cores as well as hardware threads

 Consider Oracle SPARC T4 with 8 cores, and 8 hardware

threads per core

3.14 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Concurrency vs. Parallelism

 Concurrent execution on single-core system:

 Parallelism on a multi-core system:

3.15 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Single and Multithreaded Processes

3.16 Silberschatz, Galvin and Gagne ©2013 Operating System Concepts Essentials – 2nd Edition

Exercise

Import the module

from multiprocessing import Process, Lock

def f(l,i):

 l.acquire()

 try:

 print("hello Mercy, acquired by ", i)

 finally:

 l.release()

 print("relased is ", i)

if __name__ == "__main__":

 lock = Lock()

 for num in range(10):

 print ("Number generated ", num)

 Process(target=f, args=(lock,num)).start()

